Monday 28 November 2016

AUTOMATIC DAM GATE CONTROL SYSTEM WITH CAUTION ALARM USING ARM7

Water level in a dam needs to be maintained effectively to avoid complications. This is generally performed manually which requires full time supervision by the operators & have fairly large staff complements. Moreover, the quantity of water released is hardly ever correct resulting in wastage of water & it is impossible for a man to precisely control the gates without the knowledge of exact water level and water inflow rate. The main objective of this project is to develop a mechatronics based system, which will detect the level of water and estimate the water inflow rate in a dam and thereby control the movement of gates automatically in a real-time basis which offers more flexibility. This system consists of a set of sensors connected to a stepper motor through an 8-bit microcontroller. This microcontroller operates the H-Bridge which in turn control the operation of the DC motor i.e. switches on the DC moving it in a clock wise direction. The water level and rate of inflow is detected based on the feedback from the sensors used. Based on this data, the level of dam gate can be automatically controlled using a DC motor. The LPC2148 are based on a 16/32 bit ARM7TDMI-S™ CPU with real-time emulation and embedded trace support, together with 128/512 kilobytes of embedded high speed flash memory. A 128-bit wide memory interface and unique accelerator architecture enable 32-bit code execution at maximum clock rate. For critical code size applications, the alternative 16-bit Thumb Mode reduces code by more than 30% with minimal performance penalty. With their compact 64 pin package, low power consumption, various 32-bit timers, 4- channel 10-bit ADC, USB PORT,PWM channels and 46 GPIO lines with up to 9 external interrupt pins these microcontrollers are particularly suitable for industrial control, medical systems, access control and point-of-sale. With a wide range of serial communications interfaces, they are also very well suited for communication gateways, protocol converters and embedded soft modems as well as many other general-purpose applications. This project uses two power supplies, one is regulated 5V for modules and other one is 3.3V for LPC2148. 7805 three terminal voltage regulator is used for voltage regulation. Bridge type full wave rectifier is used to rectify the ac out put of secondary of 230/12V step down transformer.

No comments:

Post a Comment